Coral Reefs: An Ecosystem In Transition

Download EBook
Synopsis

This book covers in one volume materials scattered in hundreds of research articles, in most cases focusing on specialized aspects of coral biology. In addition to the latest developments in coral evolution and physiology, it presents chapters devoted to novel frontiers in coral reef research. These include the molecular biology of corals and their symbiotic algae, remote sensing of reef systems, ecology of coral disease spread, effects of various scenarios of global climate change, ocean acidification effects of increasing CO2 levels on coral calcification, and damaged coral reef remediation. Beyond extensive coverage of the above aspects, key issues regarding the coral organism and the reef ecosystem such as calcification, reproduction, modeling, algae, reef invertebrates, competition and fish are re-evaluated in the light of new research and emerging insights. In all chapters novel theories as well as challenges to established paradigms are introduced, evaluated and discussed. This volume is indispensable for all those involved in coral reef management and conservation.

Book Information

Hardcover: 552 pages
Publisher: Springer; 2011 edition (December 6, 2010)
Language: English
ISBN-10: 9400701136
Product Dimensions: 10.8 x 8.3 x 1.4 inches
Shipping Weight: 3.3 pounds (View shipping rates and policies)
Average Customer Review: 4.0 out of 5 stars
Best Sellers Rank: #3,373,989 in Books (See Top 100 in Books)
#87 in Books > Science & Math > Nature & Ecology > Ecosystems > Coral Reefs
#1251 in Books > Science & Math > Biological Sciences > Biology > Marine Biology
#1542 in Books > Science & Math > Biological Sciences > Animals > Marine Life

Customer Reviews

This reference was used by the Senate subcommittee on the Environment. I bought it because my sister wrote one of the articles. Interesting snapshot into the timeframe described.

Download to continue reading...

Coral Reefs: An Ecosystem in Transition Coral Reef Fishes: Dynamics and Diversity in a Complex

Dmca